查看原文
其他

手把手教你用1行代码实现人脸识别 -- Python Face_recognition

2017-10-31 Kangvcar Python爱好者社区

作者:Kangvcar

简书专栏:http://www.jianshu.com/u/d9c480744afd


环境要求:


  • Ubuntu17.10

  • Python 2.7.14


环境搭建:


1. 安装 Ubuntu17.10  > 安装步骤在这里

http://www.jianshu.com/p/778e92eb0461

 

2. 安装 Python2.7.14 (Ubuntu17.10 默认Python版本为2.7.14)


3. 安装 git 、cmake 、 python-pip
# 安装 git $ sudo apt-get install -y git # 安装 cmake $ sudo apt-get install -y cmake # 安装 python-pip $ sudo apt-get install -y python-pip
4. 安装编译dlib

安装face_recognition这个之前需要先安装编译dlib

# 编译dlib前先安装 boost $ sudo apt-get install libboost-all-dev # 开始编译dlib # 克隆dlib源代码 $ git clone https://github.com/davisking/dlib.git $ cd dlib $ mkdir build $ cd build $ cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1 $ cmake --build .(注意中间有个空格) $ cd .. $ python setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA


5. 安装 face_recognition


# 安装 face_recognition $ pip install face_recognition # 安装face_recognition过程中会自动安装 numpy、scipy 等



环境搭建完成后,在终端输入 face_recognition 命令查看是否成功


实现人脸识别:



示例一(1行代码实现人脸识别):


1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片。其中每个人一张图片,图片以人的名字命名:



known_people文件夹下有babe、成龙、容祖儿的照片


2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片:



unknown_pic文件夹下是要识别的图片,其中韩红是机器不认识的


3. 然后你就可以运行face_recognition命令了,把刚刚准备的两个文件夹作为参数传入,命令就会返回需要识别的图片中都出现了谁:



识别成功!!!



示例二(识别图片中的所有人脸并显示出来):


# filename : find_faces_in_picture.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition # 将jpg文件加载到numpy 数组中 image = face_recognition.load_image_file("/opt/face/unknown_pic/all_star.jpg") # 使用默认的给予HOG模型查找图像中所有人脸 # 这个方法已经相当准确了,但还是不如CNN模型那么准确,因为没有使用GPU加速 # 另请参见: find_faces_in_picture_cnn.py face_locations = face_recognition.face_locations(image) # 使用CNN模型 # face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn") # 打印:我从图片中找到了 多少 张人脸 print("I found {} face(s) in this photograph.".format(len(face_locations))) # 循环找到的所有人脸 for face_location in face_locations:        # 打印每张脸的位置信息        top, right, bottom, left = face_location        print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))        # 指定人脸的位置信息,然后显示人脸图片        face_image = image[top:bottom, left:right]        pil_image = Image.fromarray(face_image)        pil_image.show()


用于识别的图片

# 执行python文件 $ python find_faces_in_picture.py



从图片中识别出7张人脸,并显示出来



示例三(自动识别人脸特征):

# filename : find_facial_features_in_picture.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image, ImageDraw # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition # 将jpg文件加载到numpy 数组中 image = face_recognition.load_image_file("biden.jpg") #查找图像中所有面部的所有面部特征 face_landmarks_list = face_recognition.face_landmarks(image) print("I found {} face(s) in this photograph.".format(len(face_landmarks_list))) for face_landmarks in face_landmarks_list:   #打印此图像中每个面部特征的位置    facial_features = [        'chin',        'left_eyebrow',        'right_eyebrow',        'nose_bridge',        'nose_tip',        'left_eye',        'right_eye',        'top_lip',        'bottom_lip'    ]    for facial_feature in facial_features:        print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature]))   #让我们在图像中描绘出每个人脸特征!    pil_image = Image.fromarray(image)    d = ImageDraw.Draw(pil_image)    for facial_feature in facial_features:        d.line(face_landmarks[facial_feature], width=5)    pil_image.show()


自动识别出人脸特征



示例四(识别人脸鉴定是哪个人):

# filename : recognize_faces_in_pictures.py # -*- conding: utf-8 -*- # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition #将jpg文件加载到numpy数组中 babe_image = face_recognition.load_image_file("/opt/face/known_people/babe.jpeg") Rong_zhu_er_image = face_recognition.load_image_file("/opt/face/known_people/Rong zhu er.jpg") unknown_image = face_recognition.load_image_file("/opt/face/unknown_pic/babe2.jpg") #获取每个图像文件中每个面部的面部编码 #由于每个图像中可能有多个面,所以返回一个编码列表。 #但是由于我知道每个图像只有一个脸,我只关心每个图像中的第一个编码,所以我取索引0。 babe_face_encoding = face_recognition.face_encodings(babe_image)[0] Rong_zhu_er_face_encoding = face_recognition.face_encodings(Rong_zhu_er_image)[0] unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0] known_faces = [    babe_face_encoding,    Rong_zhu_er_face_encoding ] #结果是True/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果 results = face_recognition.compare_faces(known_faces, unknown_face_encoding) print("这个未知面孔是 Babe 吗? {}".format(results[0])) print("这个未知面孔是 容祖儿 吗? {}".format(results[1])) print("这个未知面孔是 我们从未见过的新面孔吗? {}".format(not True in results))


显示结果如图



示例五(识别人脸特征并美颜):

# filename : digital_makeup.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image, ImageDraw # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition #将jpg文件加载到numpy数组中 image = face_recognition.load_image_file("biden.jpg") #查找图像中所有面部的所有面部特征 face_landmarks_list = face_recognition.face_landmarks(image) for face_landmarks in face_landmarks_list:    pil_image = Image.fromarray(image)    d = ImageDraw.Draw(pil_image, 'RGBA')    #让眉毛变成了一场噩梦    d.polygon(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 128))    d.polygon(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 128))    d.line(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 150), width=5)    d.line(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 150), width=5)    #光泽的嘴唇    d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128))    d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128))    d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), width=8)    d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), width=8)    #闪耀眼睛    d.polygon(face_landmarks['left_eye'], fill=(255, 255, 255, 30))    d.polygon(face_landmarks['right_eye'], fill=(255, 255, 255, 30))    #涂一些眼线    d.line(face_landmarks['left_eye'] + [face_landmarks['left_eye'][0]], fill=(0, 0, 0, 110), width=6)    d.line(face_landmarks['right_eye'] + [face_landmarks['right_eye'][0]], fill=(0, 0, 0, 110), width=6)    pil_image.show()

美颜前后对比


Python爱好者社区历史文章大合集

Python爱好者社区历史文章列表(每周append更新一次)

福利:文末扫码立刻关注公众号,“Python爱好者社区”,开始学习Python课程:

关注后在公众号内回复“课程”即可获取:

1.崔老师爬虫实战案例免费学习视频。

2.丘老师数据科学入门指导免费学习视频。

3.陈老师数据分析报告制作免费学习视频。

4.玩转大数据分析!Spark2.X+Python 精华实战课程免费学习视频。

5.丘老师Python网络爬虫实战免费学习视频。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存